Dimensional crossover of thermal transport in few-layer graphene.

نویسندگان

  • Suchismita Ghosh
  • Wenzhong Bao
  • Denis L Nika
  • Samia Subrina
  • Evghenii P Pokatilov
  • Chun Ning Lau
  • Alexander A Balandin
چکیده

Graphene, in addition to its unique electronic and optical properties, reveals unusually high thermal conductivity. The fact that the thermal conductivity of large enough graphene sheets should be higher than that of basal planes of bulk graphite was predicted theoretically by Klemens. However, the exact mechanisms behind the drastic alteration of a material's intrinsic ability to conduct heat as its dimensionality changes from two to three dimensions remain elusive. The recent availability of high-quality few-layer graphene (FLG) materials allowed us to study dimensional crossover experimentally. Here we show that the room-temperature thermal conductivity changes from approximately 2,800 to approximately 1,300 W m(-1) K(-1) as the number of atomic planes in FLG increases from 2 to 4. We explained the observed evolution from two dimensions to bulk by the cross-plane coupling of the low-energy phonons and changes in the phonon Umklapp scattering. The obtained results shed light on heat conduction in low-dimensional materials and may open up FLG applications in thermal management of nanoelectronics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensional dependence of phonon transport in freestanding atomic layer systems.

Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is high...

متن کامل

Two-dimensional phonon transport in graphene.

Properties of phonons-quanta of the crystal lattice vibrations-in graphene have recently attracted significant attention from the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature, while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically a...

متن کامل

Phonon Transport in Graphene

Properties of phonons – quanta of the crystal lattice vibrations – in graphene have attracted strong attention of the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically and experiment...

متن کامل

Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures.

We report direct imaging of nanoscale thermal transport in single and few-layer graphene with approximately 50 nm lateral resolution using high vacuum scanning thermal microscopy. We observed increased heat transport in suspended graphene where heat is conducted by ballistic phonons, compared to adjacent areas of supported graphene, and observed decreasing thermal conductance of supported graph...

متن کامل

Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate

Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 9 7  شماره 

صفحات  -

تاریخ انتشار 2010